
CHIN.PHYS.LETT. Vol. 25,No. 5 (2008) 1919

Nonlinear Local Lyapunov Exponent and Quantification of Local Predictability ∗
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Nonlinear local Lyapunov exponent (NLLE) is applied to quantitatively determine the local predictability limit of
chaotic systems. As an example, we find that the local predictability limit of Henon attractor varies considerably
with time, and some underlying phase-spatial structure does not appear. The local predictability limit of initially
adjacent points in phase space may be completely different. This will cause difficulties in making the long-time
analogue forecast.
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Lyapunov exponents give a measure of the long-
term average exponential rate of divergence or conver-
gence of initially adjacent phase space trajectories on
an attractor. When at least one Lyapunov exponent
is positive, the attractor is chaotic and initially nearby
trajectories diverge exponentially, on average. For
these attractors, the largest Lyapunov exponent de-
fines an average predictability time scale. An increase
of magnitude of the largest Lyapunov exponent im-
plies a decrease of predictability time scale.[1] Accord-
ing to Oseledec’s multiplicative ergodic theorem,[2]

Lyapunov exponents are almost constant everywhere
on an attractor, thus describing the global character-
istics of the attractor. However, the divergence rate
of nearby trajectories is not all the same on all parts
of a chaotic attractor. Often we could be interested in
the local predictability on the chaotic attractor, and
its estimation has been an important subject in the
predictability studies.

Temporal variation of predictability was originally
investigated by Lorenz[3] with a low-order (28 vari-
ables) spectral model. He examined the amplification
rate of root mean square error during a prescribed
time interval (hereafter inferred to as the Lorenz in-
dex), and found that growth of small perturbations
shows large variability depending upon the state of
the reference solution. Afterwards Nese[4] calculated
local divergence rates for the Lorenz attractor and in-
vestigated both the temporal and phase-spatial vari-
ations in predictability. The results show that pre-
dictability varies considerably with time, but there
is phase-spatial organization to the variability. Muk-
ougawa et al.[5] adopted the Lorenz index to investi-
gate the properties of the local predictability on the
Lorenz attractor. They pointed out the role of the un-
stable stationary point in determining the fine phase-
spatial organization of the local predictability on the
Lorenz attractor. Recently, local or finite-time Lya-
punov exponents have been defined for a prescribed

finite-time interval to study the local dynamics on an
attractor.[6−8]

Compared with the global Lyapunov exponent, the
Lorenz index, local or finite-time Lyapunov exponents
characterize the nonuniform spatial organization and
provide information on the variation of predictabil-
ity on chaotic attractors. However, these quantities
are established on the basis of the fact that the ini-
tial perturbations are sufficiently small such that the
evolution of them can be governed approximately by
the tangent linear model (TLM), which essentially be-
longs to linear error dynamics. Clearly, although two
initially nearby trajectories on a chaotic attractor re-
main nearby in a short time, they eventually diverge.
Therefore, the Lorenz index, local or finite-time Lya-
punov exponents are only applicable to study the lo-
cal predictability under conditions of sufficiently small
perturbation and short time intervals. In the situa-
tions of finite perturbation or long time intervals, these
quantities are not effective anymore.[9,10]

In view of the limitations of the quantities men-
tioned above, it is necessary to propose a new ap-
proach based on nonlinear error growth dynamics for
quantifying the local predictability of chaotic systems.
Therefore, we introduce a definition of the nonlinear
local Lyapunov exponent (NLLE) recently.[11,12] The
NLLE measures the growth rate of initial errors of
nonlinear dynamical models without linearizing the
governing equations, which is a nonlinear generaliza-
tion to the existing local or finite-time Lyapunov ex-
ponents. The NLLE and its derivatives have been
used to quantitatively determine the global average
predictability limit of chaotic systems.[12,13] In this
Letter, applications of the NLLE in investigating the
local predictability of chaotic systems are introduced.
We take the Henon map as the example to investigate
quantitatively both the temporal and phase-spatial
variability of local predictability limit on a chaotic at-
tractor.
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Let us to consider an n-dimensional continuous-
time dynamical system, which is defined by a set of
nonlinear ordinary differential equations:

d

dt
x(t) = F [x(t)], (1)

where x(t) = (x1(t), x2(t), · · · · · · , xn(t))T and the su-
perscript T indicates transpose. A solution of (1), x(t)
will be called a reference solution.

Let δ(t0) be a small perturbation superimposed on
x(t0) at the initial time t = t0. Without the tangent
linear approximation, the evolution of the small per-
turbation δ(t) is given by

d

dt
δ(t) = J(x(t))δ(t) + G(x(t), δ(t)), (2)

where J(x(t))δ(t) are the tangent linear terms,
J(x(t)) denotes the n × n Jacobian matrix: Jij =
∂Fi/∂xj , and G(x(t), δ(t)) are the high order nonlin-
ear terms of the perturbations δ. The solutions (2)
can be obtained by numerically integrating it along
the reference solution from t = t0 to t0 + τ :

δ(t0 + τ) = η(x(t0), δ(t0), τ)δ(t0), (3)

where η(x(t0), δ(t0), τ) is defined as the nonlinear
propagator, which, as described by Eq. (3), propa-
gates the initial perturbation forward to the pertur-
bation at t = t0 + τ . The nonlinear propagator
η(x(t0), δ(t0), τ) is different from the linear propaga-
tor M(x(t0), τ),[6,7] which is within the framework of
infinitesimal initial perturbations and dose not depend
on the initial perturbation δ(t0). Then the nonlinear
local Lyapunov exponent (NLLE) is defined as

λ(x(t0), δ(t0), τ) =
1
τ

ln
‖δ(t0 + τ)‖
‖δ(t0)‖ , (4)

where λ(x(t0), δ(t0), τ) depends in general on the ini-
tial state in phase space x(t0), the initial perturbation
δ(t0), and time τ . In the double limit as ‖δ(t0)‖ → 0
and τ →∞, the NLLE converges to the largest global
Lyapunov exponent λ1.[1] For the specified initial per-
turbation δ(t0), if we take the ensemble average of
the NLLE over a large number of initial states, the
global average error growth of chaotic systems can be
studied.[11−13] However, for the specified initial state
x(t0), if we take the local ensemble average of the
NLLE over a large number of random initial perturba-
tions with the same magnitude and different random
directions, the local average error growth of chaotic
systems can be investigated.

Assuming that all initial perturbations with the
amplitude ε and random directions are on an n-
dimensional spherical surface centered at an initial
point x(t0),

δT (t0)δ(t0) = ε2. (5)

The local ensemble mean of the NLLE over a large
number of random initial perturbations is given by

λ̄(x(t0), τ) = 〈λ(x(t0), δ(t0), τ)〉N , (6)

where 〈〉N denotes the local ensemble average of sam-
ples of large enough size N (N →∞). Here λ̄(x(t0), τ)
characterizes the average growth rate of random per-
turbations superimposed on x(t0) within a finite time
τ . For a fixed time τ , λ̄(x(t0), τ) varies with differ-
ent x(t0) and reflects the local error growth dynamics
of the attractor. The mean local relative growth of
initial error (LRGIE) can be obtained by

Ē(x(t0), τ) = exp(λ̄(x(t0), τ)τ). (7)

For a certain initial state x(t0), Ē(x(t0), τ) initially
increases with time τ and finally reaches the states of
nonlinear stochastic fluctuation, which means that er-
ror growth reaches saturation with a constant average
value. At that moment almost all information on ini-
tial states is lost and the prediction becomes meaning-
less. If the local predictability limit is defined as the
time at which error reaches the average value of non-
linear stochastic fluctuation states, the predictability
limit of the system at x(t0) can be quantitatively de-
termined. The NLLE and its derivatives enable us to
quantitatively determine the local predictability limit,
which is a major advantage of the new approach.

Fig. 1. For the initial state on the Henon attractor x1

(0.197, 0.195), the mean NLLE λ̄(x(t0), n) (a) and the log-
arithm of Ē(x(t0), n) (b) with ε=10−4 as a function of
time step n. The average value of the nonlinear stochastic
fluctuation states of the mean RGIE is indicated by the
constant dashed line in (b).
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The example is given by the Henon map,[14]
{

xn+1 = 1− ax2
n + yn,

yn+1 = bxn,
(8)

where a = 1.4 and b = 0.3. For two different initial
states on the Henon attractor x1 (0.197, 0.195) and
x2 (−0.96, 0.36), Figures 1 and 2 show their varia-
tions of λ̄(x(t0), n) and the logarithm of Ē(x(t0), n)
with ε = 10−4 as a function of time n (equiva-
lent to the time τ in Eqs. (6) and (7)), respectively.
Here λ̄(x(t0), n) is obtained by averaging the NLLE
λ(x(t0), δ(t0), n) over 1 × 105 random initial pertur-
bations. It can be seen that λ̄(x1(t0), n) initially oscil-
lates between positive and negative values, then shows
fluctuations around a small positive value and finally
decreases gradually and approaches zero as n increases
(Fig. 1(a)). Correspondingly, after the zigzag growth
process, Ē(x1(t0), n) finally stops growing and enters
the nonlinear stochastic fluctuation states with the
constant average value (Fig. 1(b)). If the local pre-
dictability limit is defined as the time at which er-
ror reaches the average value of nonlinear stochastic
fluctuation states, the predictability limit at x1 with
ε = 10−4 is TP = 55.

Fig. 2. The same as Fig. 1 but for the other initial state
on the Henon attractor x2 (−0.96, 0.36).

Compared with x1, the predictability at x2 is very
low. Then λ̄(x2(t0), n) initially appears a large pos-
itive value, and finally decreases gradually and ap-
proaches zero as n increases (Fig. 2(a)). Correspond-
ingly, Ē(x2(t0), n) initially grows so quickly that it
stops growing and enters the nonlinear stochastic fluc-
tuation states in a very short time (Fig. 2(b)). Accord-
ing to the definition, the predictability limit at x2 can

be obtained to be TP = 14, which is much smaller
than that at x1. The results indicate that the NLLE
and its derivatives can characterize well the finite-time
error growth and local predictability on the attractor.

Fig. 3. Local predictability limit on the Henon attractor
as a function of initial states xn (n = 1000 ∼ 2000).

Fig. 4. Estimated probability density of the local pre-
dictability limit on the Henon attractor.

Fig. 5. Distribution of the local predictability limit on
the Henon attractor. It is indicated by closed circles if
the local predictability limit of a location in phase space
is larger than 35.

Figure 3 shows the variation of the local pre-
dictability limit as a function of initial states xn (i.e.,
phase space position) for a portion of a typical trajec-
tory on the Henon attractor. It can be seen that the
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local predictability limit varies widely on the Henon
attractor. Integrating for 3 × 104 time steps, we find
a maximum value of the local predictability limit ex-
ceeding 55, while the minimum value is approximately
13. Figure 4 shows the probability density curve of
the local predictability limit on the Henon attractor.
The peak in the probability density curve occurs at
TP = 22. The very large or small values of the local
predictability limit both occur with a low probabil-
ity. The average value T̄P of the local predictability
limit on the Henon attractor is shown with an arrow
in Fig. 4. We find that the cumulative probability of
TP ≤ T̄P is approximately equal to 0.54.

Fig. 6. A very small region on the Henon attractor is
chosen by a circle (a), and the variations of the local pre-
dictability limit of the first 1000 points with the order of
the typical trajectory entering the small region (b).

For a chaotic attractor, the local predictability
limit actually gives a measure of long time-scale lo-
cal predictability on the attractor. It is different from
the local divergence rates or local Lyapunov exponent,
which are restricted to conditions of sufficiently small
perturbations and only applicable to reflect the short
time-scale local predictability. Therefore, the distri-
bution of the local predictability limit does not ap-
pear some regions of underlying high predictability or
low predictability in phase space. The locations of
high predictability are distributed everywhere on the
Henon attractor (Fig. 5). It also holds true for the lo-
cations of low predictability on the Henon attractor
(not shown).

We choose a very small region on the Henon at-

tractor (Fig. 6(a)) and sort according to the order of
the typical trajectory entering the small region. The
first entering point is recorded as m = 1, the second
entering point is recorded as m = 2, and so on. Fig-
ure 6(b) shows the variation of the local predictability
limit of the first 1000 points with the order of the typi-
cal trajectory entering the small region. It can be seen
that the local predictability limit of nearby locations
in the small region shows big differences. The varia-
tion range of the local predictability limit in the small
region almost covers the one on the whole attractor.
This implies that the local predictability limit of ini-
tially adjacent points might be completely different.
For this reason, the capability that makes the long-
range analogue forecast[15,16] is greatly reduced.

In summary, with the nonlinear local Lyapunov ex-
ponent (NLLE) and its derivatives, both global aver-
age predictability limit and local predictability limit of
a chaotic attractor can be quantitatively determined.
We focus on the applications of the NLLE in investi-
gating the local predictability of chaotic systems. Lo-
cal predictability limit gives a measure of long time-
scale local predictability on the attractor. As an ex-
ample, the local predictability limit of Henon attractor
is calculated. It is found that the local predictability
limit on the Henon attractor varies considerably with
time, and does not appear some underlying phase-
spatial structure. The local predictability limit of ini-
tially adjacent points in phase space might be com-
pletely different. This will cause difficulties of mak-
ing the long-time analogue forecast. Temporal varia-
tion of the atmospheric predictability is noticeable in
medium and extended ranges.[17,18] The prediction of
forecast skill is an important subject in medium-range
weather forecasts. By applying the NLLE to the nu-
merical weather forecasts, to providing an estimate of
the skill of a particular forecast, a priori will be a fur-
ther subject of future research.
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